在这篇文章中,我会介绍,ExploringCompactionPolicy以及RatioBasedCompactionPolicy,是如何选择需要HStoreFile来进行Compaction。
HBase版本
我采用的HBase版本是rel-2.1.0这个分支。
RatioBasedCompactionPolicy
我们首先来看RatioBasedCompactionPolicy。关于它选择HStoreFile的过程,在HBase官网有很详细的介绍。
我们这里还是翻译一下。
我们先贴RatioBasedCompactionPolicy中这部分的代码:
/**
* -- Default minor compaction selection algorithm:
* choose CompactSelection from candidates --
* First exclude bulk-load files if indicated in configuration.
* Start at the oldest file and stop when you find the first file that
* meets compaction criteria:
* (1) a recently-flushed, small file (i.e. <= minCompactSize)
* OR
* (2) within the compactRatio of sum(newer_files)
* Given normal skew, any newer files will also meet this criteria
* <p/>
* Additional Note:
* If fileSizes.size() >> maxFilesToCompact, we will recurse on
* compact(). Consider the oldest files first to avoid a
* situation where we always compact [end-threshold,end). Then, the
* last file becomes an aggregate of the previous compactions.
*
* normal skew:
*
* older ----> newer (increasing seqID)
* _
* | | _
* | | | | _
* --|-|- |-|- |-|---_-------_------- minCompactSize
* | | | | | | | | _ | |
* | | | | | | | | | | | |
* | | | | | | | | | | | |
* @param candidates pre-filtrate
* @return filtered subset
*/
protected ArrayList<HStoreFile> applyCompactionPolicy(ArrayList<HStoreFile> candidates,
boolean mayUseOffPeak, boolean mayBeStuck) throws IOException {
if (candidates.isEmpty()) {
return candidates;
}
// we're doing a minor compaction, let's see what files are applicable
int start = 0;
double ratio = comConf.getCompactionRatio();
if (mayUseOffPeak) {
ratio = comConf.getCompactionRatioOffPeak();
LOG.info("Running an off-peak compaction, selection ratio = " + ratio);
}
// get store file sizes for incremental compacting selection.
final int countOfFiles = candidates.size();
long[] fileSizes = new long[countOfFiles];
long[] sumSize = new long[countOfFiles];
for (int i = countOfFiles - 1; i >= 0; --i) {
HStoreFile file = candidates.get(i);
fileSizes[i] = file.getReader().length();
// calculate the sum of fileSizes[i,i+maxFilesToCompact-1) for algo
int tooFar = i + comConf.getMaxFilesToCompact() - 1;
sumSize[i] = fileSizes[i]
+ ((i + 1 < countOfFiles) ? sumSize[i + 1] : 0)
- ((tooFar < countOfFiles) ? fileSizes[tooFar] : 0);
}
while (countOfFiles - start >= comConf.getMinFilesToCompact() &&
fileSizes[start] > Math.max(comConf.getMinCompactSize(),
(long) (sumSize[start + 1] * ratio))) {
++start;
}
if (start < countOfFiles) {
LOG.info("Default compaction algorithm has selected " + (countOfFiles - start)
+ " files from " + countOfFiles + " candidates");
} else if (mayBeStuck) {
// We may be stuck. Compact the latest files if we can.
int filesToLeave = candidates.size() - comConf.getMinFilesToCompact();
if (filesToLeave >= 0) {
start = filesToLeave;
}
}
candidates.subList(0, start).clear();
return candidates;
}
下面采用官网的例子来解释.
对于Compaction,有几个很重要的配置项。我们一一来介绍:
- hbase.store.compaction.ratio Ratio 在选择HStoreFile时有用 (默认是 1.2f).
- hbase.hstore.compaction.min 进行Compaction时,每个HStore至少选择的HStoreFile的数量(默认是 2).
- hbase.hstore.compaction.max 进行Compaction时,每个HStore能够选择的最多的HStoreFile的数量 (默认是 10).
- hbase.hstore.compaction.min.size (bytes) 只要少于阈值,此HStoreFile就会被Compact(默认为
hbase.hregion.memstore.flush.size
,即128 mb). - hbase.hstore.compaction.max.size 与
hbase.hstore.compaction.min.size
相反,只要大于这个值,就不会被Compact (默认是 Long.MAX_VALUE). The minor compaction StoreFile selection logic is size based, and selects a file for compaction when the file <= sum(smaller_files) * hbase.hstore.compaction.ratio.
选择Compact的HStoreFile的逻辑是:
- 如果这个HStoreFile的size,小于
hbase.hstore.compaction.min.size
。那么,congratulation,你中奖了。枪打出头鸟,那就从你开始进行Compact吧。 - 如果这个HStoreFile的size,小于sum(newer_files),那么也congratulation,你也中奖了。从你开始Compact。
注意,上面的逻辑是二选一。Compact时,会先对这个HStore中的HStoreFile,按照时间排序,然后,找到满足上面任意条件的那个HStoreFile,选择它以及它后面的(hbase.store.compaction.max - 1)个文件,进行Compact。如果没有这么多个,那么就有多少选择多少。
但是,如果它后面的HStoreFile,如果比(hbase.store.compaction.min - 1)还小,那么,不好意思,下次再进行Compact吧,这次我们就先取消了。
还有一点需要注意的是,上面的sum(newer_files),尽管HBase的注释里是那么写的,但是其实代码里有个陷阱。我们看代码里是怎样计算sum的:
final int countOfFiles = candidates.size();
long[] fileSizes = new long[countOfFiles];
long[] sumSize = new long[countOfFiles];
for (int i = countOfFiles - 1; i >= 0; --i) {
HStoreFile file = candidates.get(i);
fileSizes[i] = file.getReader().length();
// calculate the sum of fileSizes[i,i+maxFilesToCompact-1) for algo
int tooFar = i + comConf.getMaxFilesToCompact() - 1;
sumSize[i] = fileSizes[i]
+ ((i + 1 < countOfFiles) ? sumSize[i + 1] : 0)
- ((tooFar < countOfFiles) ? fileSizes[tooFar] : 0);
}
我们看到,其实sum并不只是newer_file的size的和。它还要减去index(就是代码里的i)大于(currentHStoreFileIndex + hbase.hstore.compaction.max - 1)这些HStoreFile的size的sum。
也就是说,其实sum(newer_file),指的是,currentHStoreFileIndex 到 (currentHStoreFileIndex + hbase.hstore.compaction.max - 1)这些文件的size的sum.
官方文档里,说的是,sum(smaller_file)。这也是错误的。因为这份文档是0.94的。而我们现在代码是rel-2.1.0这个分支的。
理解了上面这些,官方文档中的例子就很容易理解了。这里我拿一个举例。
假设我们的配置项如下: hbase.store.compaction.ratio = 1.0f hbase.hstore.compaction.min = 3 (files) hbase.hstore.compaction.max = 5 (files) hbase.hstore.compaction.min.size = 10 (bytes) hbase.hstore.compaction.max.size = 1000 (bytes)
并且我们有7个HStoreFile,它们的size分别是7,6,5,4,3,2,1 bytes。我们已经对它们排过序,即现在就是从oldest到newest。那么,最终会选择的进行compact的HStoreFile是7,6,5,4,3。为什么呢?
7 –> Yes, because sum(6, 5, 4, 3, 2, 1) * 1.0 = 21. Also, 7 is less than the min-size 6 –> Yes, because sum(5, 4, 3, 2, 1) * 1.0 = 15. Also, 6 is less than the min-size. 5 –> Yes, because sum(4, 3, 2, 1) * 1.0 = 10. Also, 5 is less than the min-size. 4 –> Yes, because sum(3, 2, 1) * 1.0 = 6. Also, 4 is less than the min-size. 3 –> Yes, because sum(2, 1) * 1.0 = 3. Also, 3 is less than the min-size. 2 –> No. Candidate because previous file was selected and 2 is less than the min-size, but the max-number of files to compact has been reached. 1 –> No. Candidate because previous file was selected and 1 is less than the min-size, but max-number of files to compact has been reached.
官方文档是这么解释的。其实,因为7满足条件了,然后总共可以选择hbase.hstore.compaction.max
个,所以7,6,5,4,3都被选择了。
另外,我们可以看到,文档中,写的是,7 –> Yes, because sum(6, 5, 4, 3, 2, 1) * 1.0 = 21。实际上,应该是7 –> Yes, because sum(6, 5, 4, 3, 2) * 1.0 = 20。
这里贴上我关于官方文档中三个例子的单元测试,因为在rel-2.1.0中,并没有发现官方文档说的那个单元测试,就自己写了一个:
package org.apache.hadoop.hbase.regionserver.compactions;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.regionserver.EmptyStoreConfigInformation;
import org.apache.hadoop.hbase.regionserver.HStoreFile;
import org.apache.hadoop.hbase.regionserver.StoreConfigInformation;
import org.junit.Before;
import org.junit.Test;
import java.io.IOException;
import java.util.ArrayList;
/**
*
* @see "http://hbase.apache.org/0.94/book/regions.arch.html"
* to get more information
*
* */
public class TestRatioBasedCompactionPolicy {
/**
*
* Suppose the order is from old to new.
*
* */
ArrayList<HStoreFile> storeFiles = new ArrayList<>();
MockStoreFileGenerator mockStoreFileGenerator = new MockStoreFileGenerator(TestRatioBasedCompactionPolicy.class);
RatioBasedCompactionPolicy compactionPolicy = null;
private void prepareCompactionPolicy() {
Configuration configuration = new Configuration();
configuration.set("hbase.hstore.compaction.ratio", "1.0");
configuration.set("hbase.hstore.compaction.min", "3");
configuration.set("hbase.hstore.compaction.max", "5");
configuration.set("hbase.hstore.compaction.min.size", "10");
configuration.set("hbase.hstore.compaction.max.size", "1000");
StoreConfigInformation storeConfigInformation = new EmptyStoreConfigInformation();
compactionPolicy = new RatioBasedCompactionPolicy(configuration, storeConfigInformation);
}
private void prepareCandidateStoreFilesForExamplean zhao1() {
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(100));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(50));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(23));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(12));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(12));
}
private void prepareCandidateStoreFilesForExample2() {
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(100));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(25));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(12));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(12));
}
private void prepareCandidateStoreFilesForExample3() {
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(7));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(6));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(5));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(4));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(3));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(2));
storeFiles.add(mockStoreFileGenerator.createMockStoreFileBytes(1));
}
@Test
public void testApplyCompactionPolicyForExample1() throws IOException {
prepareCandidateStoreFilesForExample1();
prepareCompactionPolicy();
ArrayList<HStoreFile> toCompact = compactionPolicy.applyCompactionPolicy(storeFiles, false, false);
for (HStoreFile hsf : toCompact) {
System.out.println(hsf.getReader().length());
}
}
@Test
public void testApplyCompactionPolicyForExample2() throws IOException {
prepareCandidateStoreFilesForExample2();
prepareCompactionPolicy();
ArrayList<HStoreFile> toCompact = compactionPolicy.applyCompactionPolicy(storeFiles, false, false);
for (HStoreFile hsf : toCompact) {
System.out.println(hsf.getReader().length());
}
}
@Test
public void testApplyCompactionPolicyForExample3() throws IOException {
prepareCandidateStoreFilesForExample3();
prepareCompactionPolicy();
ArrayList<HStoreFile> toCompact = compactionPolicy.applyCompactionPolicy(storeFiles, false, false);
for (HStoreFile hsf : toCompact) {
System.out.println(hsf.getReader().length());
}
}
}
另外,从RatioBasedCompactionPolicy.applyCompactionPolicy()这段代码中,其实你是看不到按照hbase.hstore.compaction.max
来截取一部分HStoreFile来进行compaction的,你只能看到,它只是把前面的更老的不符合条件的清空了。
所以,上面的单元测试,你会看到,结果跟官方文档中,描述的并不相同。
但是,如果你从头开始测试Compaction,你会发现,它确实进行了截取。这部分代码,以后我会在Compaction并发性的单元测试中给出。
ExploringCompactionPolicy
ExploringCompactionPolicy跟RatioBasedCompactionPolicy有点像,但是也有区别。
我们先上代码:
/**
*
* Reading:
* Like `RatioBasedCompactionPolicy`, but select files by range, not one by one.
* Find out the longest (must large than min_compact_file and less than max_compact_size) file sequence
* and the smallest total file size
* to compact
*
* */
public List<HStoreFile> applyCompactionPolicy(List<HStoreFile> candidates, boolean mightBeStuck,
boolean mayUseOffPeak, int minFiles, int maxFiles) {
final double currentRatio = mayUseOffPeak
? comConf.getCompactionRatioOffPeak() : comConf.getCompactionRatio();
// Start off choosing nothing.
List<HStoreFile> bestSelection = new ArrayList<>(0);
List<HStoreFile> smallest = mightBeStuck ? new ArrayList<>(0) : null;
long bestSize = 0;
long smallestSize = Long.MAX_VALUE;
int opts = 0, optsInRatio = 0, bestStart = -1; // for debug logging
// Consider every starting place.
for (int start = 0; start < candidates.size(); start++) {
// Consider every different sub list permutation in between start and end with min files.
for (int currentEnd = start + minFiles - 1;
currentEnd < candidates.size(); currentEnd++) {
List<HStoreFile> potentialMatchFiles = candidates.subList(start, currentEnd + 1);
// Sanity checks
if (potentialMatchFiles.size() < minFiles) {
continue;
}
if (potentialMatchFiles.size() > maxFiles) {
continue;
}
// Compute the total size of files that will
// have to be read if this set of files is compacted.
long size = getTotalStoreSize(potentialMatchFiles);
// Store the smallest set of files. This stored set of files will be used
// if it looks like the algorithm is stuck.
if (mightBeStuck && size < smallestSize) {
smallest = potentialMatchFiles;
smallestSize = size;
}
if (size > comConf.getMaxCompactSize(mayUseOffPeak)) {
continue;
}
++opts;
if (size >= comConf.getMinCompactSize()
&& !filesInRatio(potentialMatchFiles, currentRatio)) {
continue;
}
++optsInRatio;
if (isBetterSelection(bestSelection, bestSize, potentialMatchFiles, size, mightBeStuck)) {
bestSelection = potentialMatchFiles;
bestSize = size;
bestStart = start;
}
}
}
if (bestSelection.isEmpty() && mightBeStuck) {
LOG.debug("Exploring compaction algorithm has selected " + smallest.size()
+ " files of size "+ smallestSize + " because the store might be stuck");
return new ArrayList<>(smallest);
}
LOG.debug("Exploring compaction algorithm has selected {} files of size {} starting at " +
"candidate #{} after considering {} permutations with {} in ratio", bestSelection.size(),
bestSize, bestSize, opts, optsInRatio);
return new ArrayList<>(bestSelection);
}
总的来说,ExploringCompactionPolicy.applyCompactionPolicy(),会选择HStoreFile的数量最多,并且,总的size最小的HStoreFile序列,来进行Compact。
ExploringCompactionPolicy,还是rel-2.1.0版本中,默认的CompactionPolicy.
还是上面的例子.
假设我们的配置项如下: hbase.store.compaction.ratio = 1.0f hbase.hstore.compaction.min = 3 (files) hbase.hstore.compaction.max = 5 (files) hbase.hstore.compaction.min.size = 10 (bytes) hbase.hstore.compaction.max.size = 1000 (bytes)
并且我们有7个HStoreFile,它们的size分别是7,6,5,4,3,2,1 bytes。我们已经对它们排过序,即现在就是从oldest到newest。那么,最终会选择的进行compact的HStoreFile是5,4,3,2,1。为什么呢?
首先,会选择[7, 6, 5]这三个文件。然后,会选择[7,6,5,4]四个文件,因为它比[7,6,5]的长度要长。随后,会选择[7,6,5,4,3]这五个文件,还是一样的道理。
然后,因为要保证长度至少是5,所以,只能选择[6,5,4,3,2]以及[5,4,3,2,1]。而明显后者的totalSize要比前两者小,所以最终的选择是[5,4,3,2,1]
对上面的单元测试,稍加修改,应该就可以看到测试结果。由于我是直接在测试Compaction并发性的单元测试中看得结果,所以这里就先不贴出来了。
ExploringCompactionPolicy与RatioBasedCompactionPolicy的关系
直接上一张类图:
从上面的对比中,其实我们能看到,ExploringCompactionPolicy相比RatioBasedCompactionPolicy,总是能拿到更小,更适合做Compaction的HStoreFile序列。
后记
上面还有一个叫做FIFOCompactionPolicy的,这个我还没仔细看,但是现在在调这个CompactionPolicy的一个bug,日后如果有时间,我会补上。